

RPC/RSL81xxx-XxxxE

Document Ordercode: DOC/RPC_RSL81X-E

Revision	Date	Author	Modification
1.0	25.10.2021	D. Scheiwiller	Exported RPC documentation from IPC documentation
1.1	28.01.2022	D. Scheiwiller	Added note on antenna port termination
1.2	21.06.2022	U. Müller	New LTE and WLAN modules
1.3	12.09.2022	U. Müller	added PF/Remote input characteristics
1.4	27.09.2022	D. Scheiwiller	added CAN bus errata
-			

Contents

1	Introd	uction		7
	1.1.	General	remarks	7
	1.2.	Contents	s of this Documentation	7
	1.3.	Naming	conventions	7
	1.4.	Docume	ents and references	8
		1.4.1.	Documents	8
		1.4.2.	Datasheets	8
		1.4.3.	White Papers and FAQs	8
	1.5.	Items de	livered	9
	1.6.	Installatio	on	9
	1.7.	Safety Re	ecommendations and Warnings	10
		1.7.1.	General safety recommendations	10
		1.7.2.	Safety warnings and requirements	10
	1.8.	Electro-st	tatic discharge	11
	1.9.	Life Cycle	e Information	11
		1.9.1.	Transportation and Storage	11
		1.9.2.	Assembly and Installation	11
		1.9.3.	Operation	11
		1.9.4.	Maintenance and Repair	11
		1.9.5.	Warranty	11
		1.9.6.	RoHS	12
		1.9.7.	Disposal	12
		1.9.8.	EMI/EMC	12
2	Produ	ct Descri _l	ption	13
	2.1	Features		13
	2.2	Product \	Variants	15
	2.3	Operatin	ng Modes	16
	2.4	Startup N	Modes	16
3	Hardw	are Desc	cription	17
	3.1	Overviev	N	17
	3.2	Memory	and I/O Resources	21
		3.2.1	General Memory Layout and Configuration	21
	3.3	Peripher	al Devices	26
		3.3.1	DisplayPort Interface	26
		3.3.2	Buzzer	27
		3.3.3	CFast-Interface	27
		3.3.4	Ethernet LAN Interface	28
		3.3.5	USB Interface	29
		3.3.6	RS232 Interface	31
		3.3.7	CAN-FD interface	33
		3.3.8	Watchdog	34

		5.5.9	GI//22	34
		3.3.10	Motion Sensor, Inertial Measurement Unit (IMU)	35
		3.3.11	LTE (optional)	36
		3.3.12	WLAN (optional)	37
		3.3.13	Digital IOs (optional)	39
		3.3.14	RS485/RS422 Interface (optional)	40
		3.3.15	Power supply	41
		3.3.16	Power supervision	42
		3.3.17	Power Fail	43
		3.3.18	Remote On/Off	44
		3.3.19	Frontside Status LEDs	46
4	Progra	ımming lı	nformation	47
	4.1	Overview	I	47
	4.2	Interrupt,	Memory and I/O Resources	47
		4.2.1	Interrupt Resources	47
		Tab. 28	Interrupt Usage	47
		4.2.2	Memory Resources	48
		4.2.3	I/O Resources	48
	4.3	Periphera	al Devices	59
		4.3.1	DisplayPort-Interface	59
		4.3.2	SATA/CFast-Interface	59
		4.3.3	Ethernet Interface	59
		4.3.4	USB Interface	59
		4.3.5	Serial Ports	59
		4.3.6	CAN-FD Interface	59
		4.3.7	LTE Interface	59
		4.3.8	WLAN Interface	59
		4.3.9	GNSS Interface	59
		4.3.10	Motion Sensor, Inertial Measurement Unit (IMU)	60
		4.3.11	Temperature Sensor	60
		4.3.12	Watchdog	60
		4.3.13	Digital IOs (optional)	60
		4.3.14	RS485/RS422 Interface (optional)	60
5	Install	ation and	cabling	61
	5.1	Introduct	ion	61
	5.2	Protective	e Earth	61
	5.3	Powering	the RSL81 System	62
	5.4	Cabling t	he interfaces	62
	5.5		Installation	63
	5.6	Groundir		65
	5.7	Cabling o	of communication links	65
6	Servic	e		67
	6.1	Replacea	ble Parts	67

RPC/RSL81xxx-XxxxE: user documentation DOC/RPC_RSL81X-E; V1.4

	6.2	Cleaning the metal housing	69
7	Techni	cal Data	70
	7.1	Electrical Data	70
	7.2	EMI/EMC Data	74
	7.3	Environmental specification	74
	7.4	Safety and Fire Protection	75
	7.5	Reliability (MTBF)	75
	7.6	Mechanical Data	76
8	Firmw	are	77
	8.1	Software Structure	77
	8.2	Firmware Functions	77
	8.3	Application Programming Interface (API)	77
9	Produ	ct Revision History	78
	9.1	Hardware	78
	9.2	Firmware	78
	9.3	Erratas	79
10	Manuf	acturer Information	81
	10.1	Contact	81
		10.1.1 RMA Service	81

List of Tables

Tab. 1	Product Variants RSL81	15
Tab. 2	Startup Modes	16
Tab. 3	Physical Memory Address Space Layout	21
Tab. 4	I/O Address Space Layout	24
Tab. 5	Factory Programming Header P12 (1x4 pin)	25
Tab. 6	Factory Programming Header P17 (1x7 pin)	25
Tab. 7	DisplayPort connector P5	26
Tab. 8	CFast Connector P8 (SATA Channel 0)	27
Tab. 9	Ethernet Twisted Pair Interface Connector P18 and P19 (M12 X)	28
Tab. 10	USB1/2 Interface Connector P20 (Dual Type A)	29
Tab. 11	USB3, 4 Interface Connector P21, P22, P23, P26, P27 (1x4pin)	30
Tab. 13	Serial Port RS232 (M12)	31
Tab. 14	Serial Ports RS232 on internal Headers P41, P42	32
Tab. 16	Dual CAN port CAN1/CAN2 (M12)	33
Tab. 17	CAN transceiver operating mode configuration	33
Tab. 18	Watchdog Configuration Options	34
Tab. 19	GNSS Antenna requirement	34
Tab. 21	DIO Process Interface Connector (M12)	39
Tab. 22	RS485 Interface Connector (DSUB9, half duplex)	40
Tab. 23	RS485 Interface Connector (DSUB9, full duplex)	40
Tab. 24	Power supply connector P1	41
Tab. 25	Power fail input configuration	42
Tab. 26	Power fail mode configuration	42
Tab. 27	PCU timing configuration through S14	44
Tab. 28	Interrupt Usage	47
Tab. 29	RSL81 System RegistersStatus Register 8200h	48
Tab. 30	General Absolute Maximum Ratings	70
Tab. 31	General Recommended Operating Conditions	71
Tab. 32	General Electrical Characteristics	72
Tab. 33	General Switching Characteristics	73
Tab. 34	MTBF values	75
Tab. 39	Mechanical specification RPC/RSL81I20-A154E	76
Tab. 40	Hardware Revision State	78
Tab. 41	Firmware Revision State	78
Tab 42	Known Frratas	70

List of Figures

Fig. 1	Block Diagram RSL81 (IPC/RSL81I20-R152E shown)	14
Fig. 2	Front Connections RPC/RSL81I20-A154E	18
Fig. 3	Backside Connections RPC/RSL81I20-A154E	18
Fig. 4	Board Layout RSL81 Baseboard Top Side	19
Fig. 5	Board Layout RSL81 Baseboard Bottom Side	20
Fig. 6	Memory MapGeneral I/O Layout and Configuration	22
Fig. 7	M12 D-coded Female Pinout (front view)	28
Fig. 8	Serial Port RS232 Pinout (M12 A-coded, male, front view)	31
Fig. 9	Dual CAN Port Pinout (M12 A-coded, female, front view)	33
Fig. 10	G-Sensors of GNSS ADR modul	35
Fig. 11	Motion Sensor	35
Fig. 12	Location of SIM Card holder	37
Fig. 13	DIO Pinout (M12 A-coded, male, front view)	39
Fig. 14	M12 A-coded Male Pinout (front view)	41
Fig. 15	Typical power fail application	43
Fig. 16	Typical power fail flow	43
Fig. 17	Application example: CAR PC	45
Fig. 18	Startup timing diagram	45
Fig. 19	Shutdown timing diagram	45
Fig. 20	SIM card installation	63
Fig. 21	Check device gasket	64
Fig. 22	Secure the cover	64
Fig. 23	Additional grounding of the cable shields at the entry point of a cabinet.	65
Fig. 24	Isolated communication link	66
Fig. 25	Non isolated communication link with common chassis potential	66
Fig. 26	Service parts replacement	68
Fig. 31	Mechanical Outline Enclosure RPC/RSL81I20-A154E	76

1 Introduction

1.1. General remarks

The content and presentation of this document has been carefully checked. No responsibility is accepted for any errors or omissions in the documentation.

Note that the documentation for the products is constantly revised and improved. The right to change this documentation at any time without notice is therefore reserved.

Syslogic is grateful for any help referring to errors or for suggestions for improvements.

The following registered trademarks are used:

IBM-PC, PC/AT, PS/2trademarks of IBM CorporationI²Ctrademark of Philips CorporationCFasttrademark of CompactFlash Association

PCIe trademark of PCI-SIG

1.2. Contents of this Documentation

This document addresses to system integrators, programmers and instructed installation and maintenance personal working with the industrial PC system. It provides all information needed to configure, setup and program the IPC/RSL81 systems. For complete information also the documentation of the mounted communications and I/O boards must be consulted.

1.3. Naming conventions

In the following paragraphs all descriptions referenced to "RSL81" apply to all products listed in table 1, if not declared otherwise.

1.4. Documents and references

1.4.1. Documents

The following additional documents are *required* for correct installation and operation of the RSL81 system:

- Documents and resources on Syslogic DI4O4T digital io board

 $\underline{https://www.syslogic.com/eng/usb-mini-card-mit-acht-digital-io-79041.shtml}$

- Documents and resources on Syslogic USB485D serial RS485 io board https://www.syslogic.com/eng/usb-seriell-konverter-usb-zu-rs422485-79207.shtml

1.4.2. Datasheets

For additional and more detailed information on the Intel Atom processor and chipset the following documents are of interest:

- Datasheet Intel Atom Processor E39xx Series https://www.intel.com/content/www/us/en/embedded/products/apollo-lake/overview.html

- Datasheet Intel I210 GbE Controller Family http://www.intel.com/content/www/us/en/embedded/products/networking/ethernet-controller-i210-i211-family.html
- Datasheet and resources on Sierra Wireless EM7565 LTE modem https://source.sierrawireless.com/devices/em-series/em7565
- Datasheet and resources on Intel Wireless-AC 9260 WLAN module https:// https://www.intel.com/content/www/us/en/products/sku/99445/intel-wirelessac-9260
- Datasheet and resources on u-Blox NEO-M9V GPS module https://www.u-blox.com/en/product/neo-m9l-module
- Datasheet and resources ST Microelectronics iNEMO inertial modul ISM330DHCX https://www.st.com/content/st_com/en/products/mems-and-sensors/inemo-inertial-modules/ism330dhcx.html

1.4.3. White Papers and FAQs

The following links provide additional information and documents for the operation of the RSL81 system:

https://www.syslogic.com/eng/white-papers_24442.shtml https://www.syslogic.com/eng/downloads_24265.shtml RPC/RSL81xxx-XxxxE: user documentation DOC/RPC_RSL81X-E; V1.4

1.5. Items delivered

The RSL81 comes without external cabling and power supply. These additional items must be ordered separately and installed according to the respective user documentations.

1.6. Installation

The installation of the RSL81 system is described in chapter 5 of this documentation.

Important Note

Before applying power to the RSL81 system, all installed boards must be correctly configured and mounted.

1.7. Safety Recommendations and Warnings

1.7.1. General safety recommendations

The products are intended for measurement, control and communications applications in railway applications. The products must be assembled and installed by specially trained people. The strict observation of the assembly and installation guidelines is mandatory.

The use of the products in systems in which life or health of persons is directly dependent (e.g. life support systems, patient monitoring systems, etc.) is not allowed.

The use of the products in potentially explosive atmospheres requires additional external protection circuitry which is not provided with the products.

In case of uncertainty or of believed errors in the documentation please immediately contact the manufacturer (address see chapter 10). Do not use or install the products if you are in doubt. In any case of misuse of the products, the user is solely liable for the consequences.

1.7.2. Safety warnings and requirements

Do not operate this product outside of the recommended operating conditions according to the technical data specified in paragraph 6.

Strictly observe the installation instructions listed in paragraph 5.

Do not touch the surface of this product without precaution, it may be hot and burn your skin. Cool it down before touching.

Do not touch any connector unless you have verified that no dangerous voltage is around. Disconnect cabling first.

Do not open any part of the enclosure while power is applied.

Do not try to repair any defective product by yourself. There is no replaceable service part inside.

Do not open the service cover unless you are instructed and entitled to do this. The service cover is intended for inserting the CFast software storage and SIM card on initial operation of the product by an instructed person only.

Do not operate the system without certified matching antennas connected to all antenna ports.

The antenna for UMTS/LTE may be harmful if people are exposed to the radiation for too long. Therefore place the antenna way that there is always a distance of 45cm to places people stay

1.8. Electro-static discharge

Electronic boards are sensitive to Electro-Static Discharge (ESD). Please ensure that the product is handled with care and only in a ESD protected environment. Otherwise a proper operation is not guaranteed and the warranty is not applicable.

1.9. Life Cycle Information

1.9.1. Transportation and Storage

During transportation and storage the products must be in their original packing. It is recommended, to keep the original packing in case of return of the product to the factory for repair. Note that the packing is recyclable.

1.9.2. Assembly and Installation

Observe the EMI-precautions against static discharge. Carefully read the assembly and installation documentation (see chapter 5) before unpacking the products. Make sure that you have all the necessary items ready (including all the small parts). Follow the assembly guidelines in chapter 5 strictly.

The installation procedures must be observed strictly. Note that deviations from the installation guidelines may result in degraded operational reliability or in unfavorable EM-radiation or EM-susceptibility.

1.9.3. Operation

The operating environment must guarantee the environmental parameters (temperature, power supply, etc.) specified in the technical specification section of the product manuals.

The main functionality of the RSL81 system is defined by the application programs running on the processor board. The application programs are not part of the delivery by Syslogic but are defined, developed and tested by the customer or a system-integrator for each specific application. Refer to the respective documentation for more information.

1.9.4. Maintenance and Repair

The RSL81 system features error- and malfunction-detection circuitry. Diagnostic information gathered is transferred to the applications software where it can be used. In the rare case of a module hardware-failure or malfunction, the complete system should be exchanged. The faulty system must be returned to the factory for repair.

For best maintenance and repair service it is recommended to use the Syslogic RMA Service. Refer to Chapter 10.1.1.

Please use whenever possible the original packing for return of the product (EMI and mechanical protection).

1.9.5. Warranty

Our products are covered by a world-wide manufacturer's warranty. The warranty period starts at the delivery time from our official distributor to the customer. The duration of the warranty period is specified in the respective product catalogs and the offers. All products carry a job number for identification. The manufacturing data and deliveries are registered in a high level Quality Management System.

The warranty covers material and manufacturing defects. All products must be returned via the official distributor to the factory for repair or replacement. The warranty expires immediately if the products are damaged of operation outside of the specified recommended operating conditions. The warranty also expires if the date code or job number listed on the product is altered or rendered unintelligible. The warranty does not include damage due to errors in firmware or software delivered with the products. For best warranty service it is recommended to use the Syslogic RMA Service. Refer to Chapter 10.1.1.

RPC/RSL81xxx-XxxxE: user documentation DOC/RPC RSL81X-E; V1.4

1.9.6. RoHS

The products of the RSL81 family are designed and produced according to the Restriction of Hazardous Substances (RoHS) Directive (2011/65/EU)

1.9.7. Disposal

At the end of the lifespan the RSL81 products must be properly disposed. RSL81 products contain a multitude of elements and must be disposed like computer parts.

The RSL81 products of the are not designed ready for operation for the end-user and are not intended for consumer applications.

1.9.8. EMI/EMC

This product fulfills all EMI/EMC requirements for railway applications (rolling stock). This is a Class A product and not intended to be used in domestic environments. The product may cause electromagnetic interference. Appropriate measures must be taken.

WARNING

This equipment is compliant with Class A of EN55032. In a residential environment this equipment may cause radio interference.

Attention: Be aware of the local laws and standards while using wireless communication. Compliance to a certain standard normally does not comply operating or importing the device into a country. Always check local laws. If required register the device at its destination.

2 Product Description

2.1 Features

The RPC/RSL81 system is a x86 based industrial PC designed for use in harsh environments.

The RSL81 offers the following main features:

- low power industrial processor board eliminating the need for enforced cooling
- high performance 64-bit Intel Atom x7-E3950 based quad core processor with integrated floating point unit
- up to 2 GHz processor clock
- up to 8 Gbyte DRAM on board
- 64-bit graphics controller with partial backwards compatibility to VGA and SVGA standards
- graphics controller supporting up to 4096x2160 dots resolution on DisplayPort interface
- SATA interface supporting one CFast card socket
- integrated peripheral controller (IPC) with PC/AT compatible DMA controllers (2 x 8237), interrupt controllers (2 x 8259) and timer/counter channels (8254)
- one USB V3.0/ V2.0 port (XHCI/EHCI-Hostcontroller) with Super-, High-, Full- and Low-Speed support
- one USB V2.0 port (OHCI/EHCI-Hostcontroller) with High-, Full- and Low-Speed support
- two 10/100/1000Mbit Ethernet LAN interfaces
- Year 2000 compliant Real Time Clock (PC/AT compatible)
- hardware watchdog configurable for 100 ms to 256 s timeout and hardware reset activation
- temperature supervisor for software controlled power management
- Flash for BIOS and BIOS extensions
- supervised Lithium Battery or GoldCap backup for Real Time Clock
- non-isolated 12/24/36V wide input range (8.4Vdc ... 45Vdc)
- onboard buzzer
- GNSS positioning system
- Motion Sensor (IMU) with 3 axis accelerometer and gyroscope
- UMTS/LTE connectivity (optional)
- WLAN connectivity (optional)
- two high speed CAN-FD interfaces, galvanically isolated, normal or Listen only mode (Silent Mode)

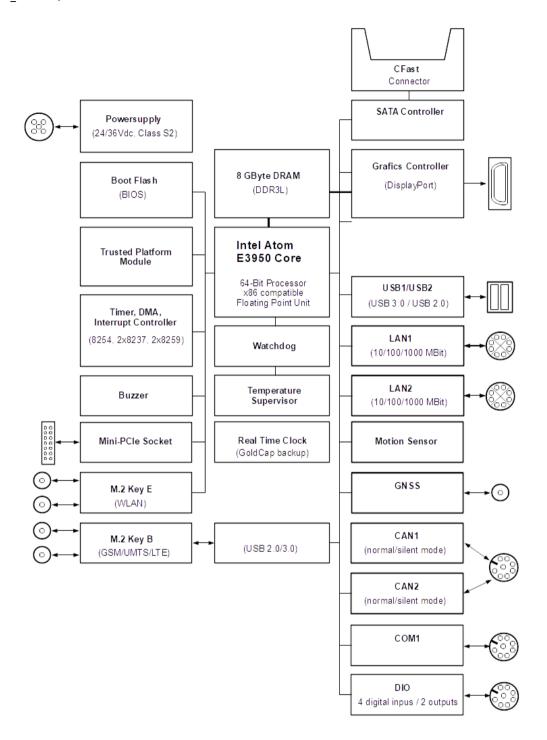


Fig. 1 Block Diagram RSL81 (IPC/RSL81I20-R152E shown)

Important Note

Check the product variant carefully for the supported functions.

2.2 **Product Variants**

The RSL81 is available in different functional variants and enclosures.

The following tables show the functional differences of the IPC/RSL81 variants. Bold printed functions are available on a front or rear connector. See Fig. 4 for location of the internal interfaces.

Function	RPC/RSL81120-
	A154E
CPU	Atom E3950 2GHz
Memory	8 GByte
LAN1	LAN1
LAN2	LAN2
WLAN	WLAN (Intel Wireless-
	AC 9260)
GNSS	GPS (NEO-M9V)
UMTS/LTE	LTE (EM7565)
COM1	COM1 (RS232, M12)
COM2	P42 (RS232)
COM3	-
CAN1	CAN1/CAN2 (M12)
CAN2	
DIO	DIO (M12)
USB1/2	USB3.0/2.0
Display	DisplayPort
Audio	Buzzer
CFast	P8
Motion Sensor	ISM330DHCX
TPM	SLB9665
RTC Backup	Lithium Battery
Power Supply	8.4-45V non-isol.
UPS	-

Tab. 1 Product Variants RSL81

2.3 Operating Modes

The RSL81 is based on the standard PC/AT architecture and therefore operates in DOS-compatible mode (real mode) on start up. The configurable BIOS initializes all onboard peripherals to their default values, executes the BIOS extensions programmed into the onboard BIOS-Flash and BIOS extensions found on installed expansion boards prior to booting the operating system from a user-selectable drive (boot sector). The operating system (or eventually a BIOS extension) may switch to protected mode to execute high performance 32-bit or 64-bit program code.

2.4 Startup Modes

The RSL81 may startup either in normal operating mode or in BIOS recovery mode:

- BIOS recovery mode is invoked when rotary switch S1 is set to position '8'.
 In BIOS recovery mode is intended to reprogram a corrupt main BIOS. Before starting the reprogram process, switch S1 must be reset to position '0', otherwise the recovery BIOS will be overwritten.
- Normal operating mode is invoked when rotary switch S1 is set to position '0'.

Other parameters like backlight control and watchdog base timeout are also dependent on S1 setting:

Switch	Startup Mode	Watchdog Base	Remark
S 1		Timeout	
0	normal operating modes	1 s	Factory Setting
1		100ms	
2		1 s	
3		100ms	
4		1 s	
5		100ms	
6		1 s	
7		100ms	
8	BIOS recovery mode	1 s	
9	factory modes	1 s	
Α	(do not use)	1 s	
В		1 s	
С	factory modes	1 s	
D	(do not use)	1 s	
Е		1 s	
F		1 s	

Tab. 2 Startup Modes

3 Hardware Description

3.1 Overview

The RSL81 hardware may be configured by software (CMOS setup) and by switch settings. Custom BIOS configuration can be programmed into the BIOS flash on request (ask Syslogic technical support for custom BIOS configuration). The switch and connector locations are shown in the board layout drawing (see Fig. 4).

Important Note

Always check the switch configuration of a freshly received board to comply with your system requirements before applying power, otherwise the system may get damaged or may fail to operate.

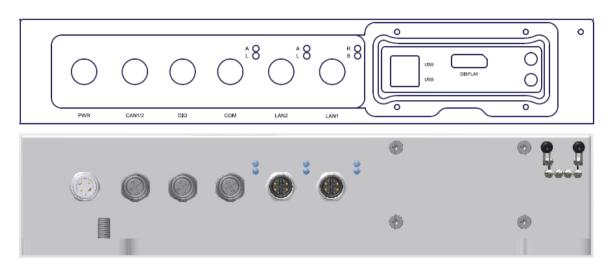


Fig. 2 Front Connections RPC/RSL81I20-A154E

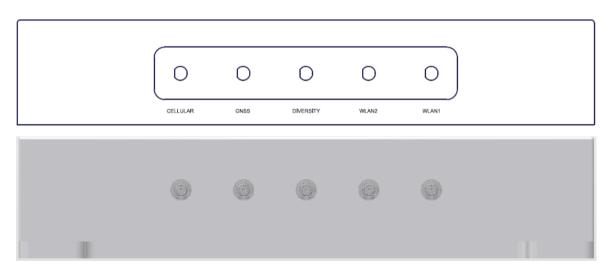


Fig. 3 Backside Connections RPC/RSL81I20-A154E

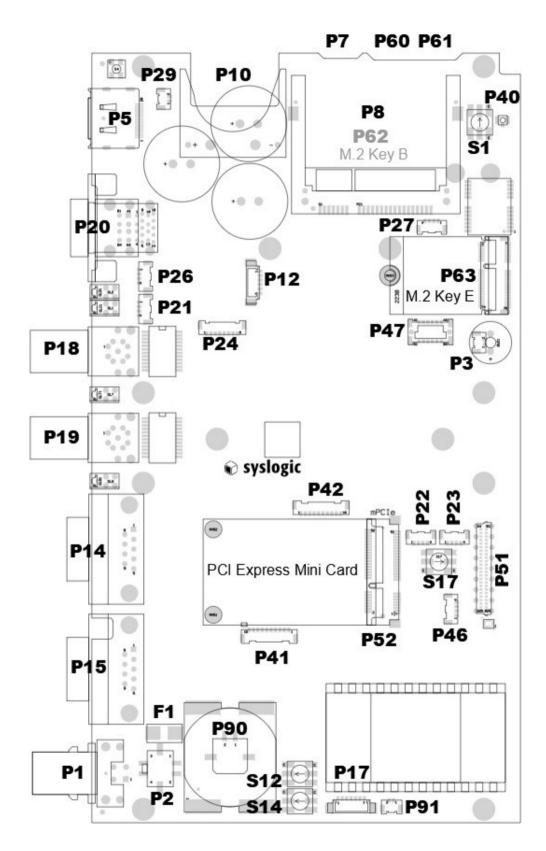


Fig. 4 Board Layout RSL81 Baseboard Top Side

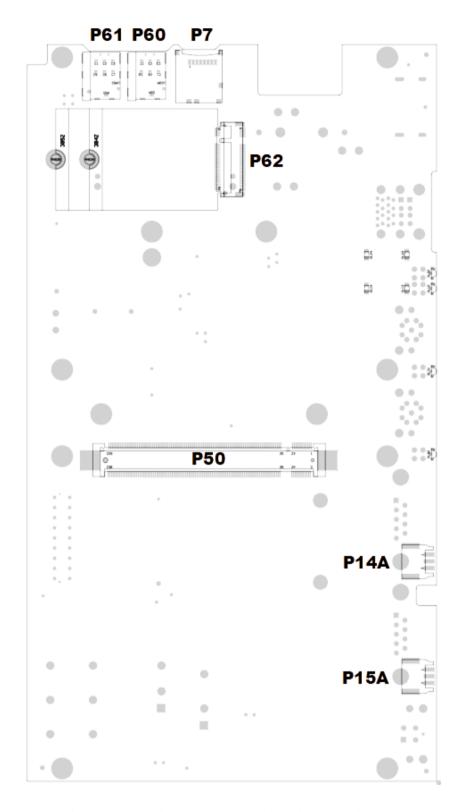


Fig. 5 Board Layout RSL81 Baseboard Bottom Side

3.2 Memory and I/O Resources

3.2.1 General Memory Layout and Configuration

The RSL81 uses the same memory layout as a standard desktop PC. Three onboard devices, DRAM, graphics controller, and BIOS, make use of the 4 Gbyte (32-bit mode) / 64Gbyte (64-bit mode) addressable memory space.

Address	Device / Register	Remarks
0000'00000009'FFFFH	640 kbyte Main Memory (DRAM)	
000A'0000000B'FFFFH	VGA Video Memory	
000C'0000000F'FFFFH	Configurable memory range (BIOS, BIOS	
	Extensions, DRAM or redirected to PC/104	
	bus)	
0010'0000 FFFF'FFFFH	2-4 Gbyte Main Memory (DRAM)	including graphics memory (UMA)
0000'0001'0000'0000	up to top	64-bit mode only
0000'000F'FFFF'FFFH		

Tab. 3 Physical Memory Address Space Layout

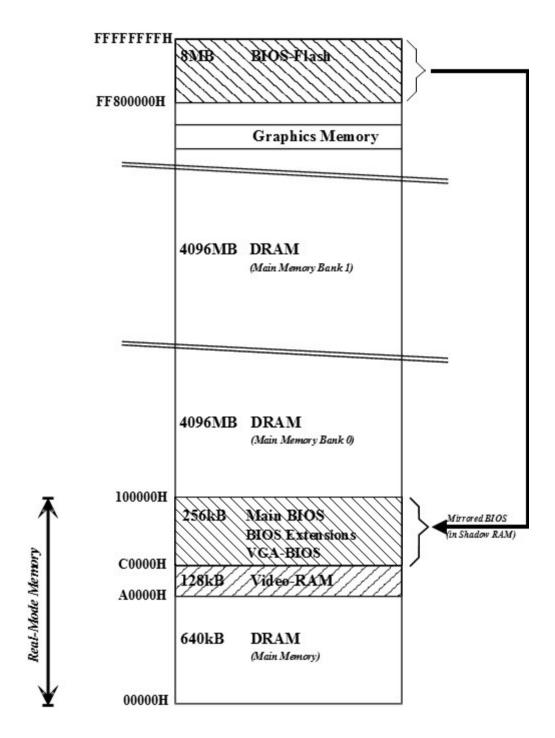


Fig. 6 Memory Map

General I/O Layout and Configuration

The RSL81 64 kbyte I/O address space is mapped to peripheral devices as indicated in the table below.

Address	Device / Register	Remarks
0000001FH	DMA Controller 1	
00200021H	Master Interrupt Controller	
0022H	Configuration Address Register	
0023H	Configuration Data Register	
0024003FH	reserved	
00400043H	Timer/Counter	
0044005FH	reserved	
0060H	Keyboard/Mouse Controller	
0061H	Port B Register	
00620063H	reserved	
0064H	Keyboard/Mouse Controller	
0065006FH	reserved	
0070H	Bit 60 = RealTimeClock/CMOS-RAM Address Register	
	Bit 7 = Non Maskable Interrupt (NMI) Mask (write only)	
0071H	RealTimeClock/CMOS-RAM Data Register	
0072007FH	reserved	
00800091H	DMA Page Registers / reserved	
0092H	Port 92h System Control Register	
0093009FH	reserved	
00A000A1H	Slave Interrupt Controller	
00A200BFH	reserved	
00C000DFH	DMA Controller 2	
00E0010FH	reserved	
0110016FH	reserved	
01700177H	Secondary IDE Channel	
017801EFH	reserved	
01F001F7H	Primary IDE Channel	
01F801FFH	reserved	
02000207H	reserved for Serial Ports (COM3)	
0208020FH	reserved for Serial Ports (COM4)	
0210026FH	not used	
0278027FH	reserved for Parallel Port (LPT2) and Plug'n Play	
028002E7H	reserved	
02E802EFH	reserved for Serial Port (COM4)	
02F002F7H	reserved	
02F802FFH	reserved for Serial Port (COM2)	
0300036FH	not used	
03700377H	reserved for external Secondary Floppy Controller	
03760377H	reserved for external Secondary IDE Channel	
0378037FH	Parallel Port (LPT1)	

038003AFH	reserved
03B003BBH	VGA registers (MDA)
03BC03BFH	reserved for Parallel Port (LPT3)
03C003CFH	VGA registers (EGA)
03D003DFH	VGA registers (CGA)
03E003E7H	reserved
03E803EFH	reserved for Serial Port (COM3)
03F003F7H	reserved for external Primary Floppy Controller
03F603F7H	Primary IDE Channel
03F803FFH	reserved for Serial Port (COM1)
0400042FH	reserved
043004EFH	reserved
0480048FH	DMA High Page Registers / reserved
0490049FH	Instruction Counter Registers / reserved
04A004CFH	reserved
04D004D1H	IRQ Edge/Level Control
04D204FFH	reserved
050008FFH	reserved
09000A77H	reserved
0A78H	Plug'n Play configuration port
0A790BFFH	reserved
0C000CF7H	reserved
0CF80CFFH	PCI configuration registers
0D000FFFH	reserved
10003FFFH	reserved
4000 46E7H	reserved
46E8H	reserved
46E947FFH	reserved
48006FFFH	reserved
70007FFFH	not used
800081FFH	reserved
8200821FH	RSL81 system registers
822083FFH	reserved for Syslogic IPC add-on boards
8400BFFFH	reserved
C000FFFFH	reserved for PCI devices (VGA, Ethernet, USB, SATA)

Tab. 4 I/O Address Space Layout

The programmable logic device on the RSL81 board is factory programmed using some pins of the internal header P12. These pins **must not** be connected by the user.

Pin Number	Signal	Remarks
1	TCK (do not connect)	
2	TDO (do not connect)	
3	TMS (do not connect)	
4	TDI (do not connect)	
5	JTAG_VCC (do not connect)	
6	JTAG_GND (do not connect)	

Tab. 5 Factory Programming Header P12 (1x4 pin)

The power management controller on the RSL81 board is factory programmed using the internal header P17. This header **must not** be connected by the user.

Pin Number	Signal	Remarks
1	VPP/MCLR# (do not connect)	PICkit3 pin 1
2	VCC (do not connect)	PICkit3 pin 2
3	GND (do not connect)	PICkit3 pin 3
4	PGD (ICSPDAT, do not connect)	PICkit3 pin 4
5	PGC (ICSPCLK, do not connect)	PICkit3 pin 5
6	PGM LVP (SCL, do not connect)	PICkit3 pin 6
7	(SDA, do not connect)	

Tab. 6 Factory Programming Header P17 (1x7 pin)

3.3 Peripheral Devices

3.3.1 DisplayPort Interface

The DisplayPort signals are available on the DisplayPort connector P5 for direct connection of DisplayPort compatible monitors. The controller uses the standard VGA register interface. All configuration is done by software (BIOS, VGA-BIOS, OS driver).

Device Connection

Pin Number	Signal	Remarks
1	ML Lane 0 +	Lane 0 (positive)
2	GND	Ground
3	ML Lane 0 -	Lane 0 (negative)
4	ML Lane 1 +	Lane 1 (positive)
5	GND	Ground
6	ML Lane 1 -	Lane 1 (negative)
7	ML Lane 2 +	Lane 2 (positive)
8	GND	Ground
9	ML Lane 2 -	Lane 2 (negative)
10	ML Lane 3 +	Lane 3 (positive)
11	GND	Ground
12	ML Lane 3 -	Lane 3 (negative)
13	CONFIG1	Configuration input 1
14	CONFIG2	Configuration input 2
15	AUX CH +	Auxiliary channel (positive)
16	GND	Ground
17	AUX CH -	Auxiliary channel (negative)
18	Hot plug	Hot plug dectect
19	Return	Return for power
20	DP_PWR	Power for connector (3.3V, 500mA)

Tab. 7 DisplayPort connector P5

Important Note

Maximum cable length for DisplayPort connection is dependent on pixel clock frequency (about 3 m for full bandwidth transmission, up to 15m for reduced bandwidth transmission1920x1080 resolution with a refresh rate of 60Hz). For EMI conformance cable length is restricted to maximum 3m. If longer cables are used, special overvoltage and filtering elements have to be installed to comply with the requirements of EMI/RFI "CE"-certification.

Use high quality shielded DisplayPort cables for maximum EMI protection.

Do not feed any voltage into pin 20 (DP_PWR), it is a supply output only for an optional external DisplayPort adapter.

3.3.2 Buzzer

A buzzer is available driven by the standard PC timer 1. Use 2.4kHz for maximum volume.

3.3.3 CFast-Interface

The RSL81 features a SATA generation 3 hostcontroller having assigned the base address and IRQ at boot time by the PCI-BIOS. Channel 0 of the SATA controller serves the CFast socket P8. The CFast card behaves like a standard SATA disk.

Tested CFast cards are:

- Cactus Technologies KC-series

Device Connection (CFast)

Pin Number	Signal	Pin Number	Signal
S1	SGND	PC1	CDI
S2	RxP	PC2	GND
S3	RxN	PC3	nc
S4	SGND	PC4	nc
S5	TxN	PC5	nc
S6	TxP	PC6	nc
S7	SGND	PC7	GND
		PC8	LED1
		PC9	LED2
		PC10	101
		PC11	102
		PC12	103
		PC13	PWR
		PC14	PWR
		PC15	PGND
		PC16	PGND
		PC17	CDO

Tab. 8 CFast Connector P8 (SATA Channel 0)

Important Note

Do not insert or remove the CFast card when power supply is on. This interface does not support hot-plugging.

3.3.4 Ethernet LAN Interface

The RSL81 features up to two PCI Ethernet controllers having assigned the base address and IRQ at boot time by the BIOS. The Ethernet interface drives two LED's (yellow and green) beside the LAN connector for status information. The meaning of the LED activity is programmable (normally set by the low level driver).

LAN1 and LAN2 feature Intel I210 Ethernet controllers supporting standard IEEE 802.3 Ethernet interfaces for 10/100/1000Mb/s 10BASE-T, 100BASE-TX, 1000BASE-T connections. Both interfaces support Auto Negotiation and Auto MDIX functions as well as Audio-Video Bridging (AVB) and IEEE 802.1AS precision timestamping. Check manufacturer's datasheets for detailed information. No configuration options are available for the Ethernet device.

Device Connection

The Ethernet interfaces use the standard X-coded M12 Gigabit connector P18 and P19 on the front for 100 shielded Twisted Pair cabling.

Mating connector type for P18, P19: any standard X-coded male M12 Gigabit conformal connector.

Pin Number	Signal	Remarks
1	MDX0+	
2	MDX0-	
3	MDX1+	
4	MDX1-	
5	MDX3+	
6	MDX3-	
7	MDX2-	
8	MDX2+	

Tab. 9 Ethernet Twisted Pair Interface Connector P18 and P19 (M12 X)



Fig. 7 M12 D-coded Female Pinout (front view)

Important Note

Do not apply any supply voltage to this port.

3.3.5 USB Interface

The RSL81 features an OHCI/EHCI and a XHCI compatible USB host controller having assigned the base address and IRQ at boot time by the PCI-BIOS. All ports support USB 2.0 devices and port 1 supports USB 3.0 devices with Superspeed.

Device Connection

The USB interface uses a standard A type double USB connector on the front for USB ports 1 and 2. Ports 3 and 4 are located on two internal 4 pin connectors.

P20 bottom	USB port 1	P20 top	USB port 2
Pin Number	Signal	Pin Number	Signal
1	VBUS	1	VBUS
2	D-	2	D-
3	D+	3	D+
4	GND	4	GND
5	SSRX-	5	-
6	SSRX+	6	-
7	SSGND	7	-
8	SSTX-	8	-
9	SSTX+	9	-

Tab. 10 USB1/2 Interface Connector P20 (Dual Type A)

Pin Number	Signal	Remarks
1	VBUS	
2	D-	
3	D+	
4	GND	

Tab. 11 USB3, 4 Interface Connector P21, P22, P23, P26, P27 (1x4pin)

Mating connector type for P21, P22, P23, P26: Housing Molex Micro-Lock Plus 505565-0401, Crimp contacts Molex 505431-1100. Recommended wire type: 26-28AWG, max insulation diameter 1.02mm. Twisted D+/D- wires.

Important Note

Maximum cable length allowed for USB connection is 3 m. If longer cables are used, special overvoltage and filtering elements have to be installed to comply with the requirements of EMI/RFI "CE"-certification. Only use high quality industrial USB devices with sufficient EMI compatibility.

Use shielded cables for maximum EMI protection.

Drawing excessively power might disturb operation.

Important Note

P22 is shared with USB2.0 on mPCle slot, do not connect P22 if an mPCle board is mounted! P23 is shared with the expansion connector, do not connect P23 if an expansion board is mounted! P27 is shared with the onboard GNSS module, do not connect P27 if the GNSS module is populated!

3.3.6 RS232 Interface

RSL81 features up to two serial ports with standard RS232 signals (COM1, COM2). Depending on the product variant these ports are available on standard DSUB-9 connectors or 8-pin male A-coded M12 connector on the front, or on internal headers P41, P42. The serial ports have factory set base addresses of 3F8H for COM1 and 2F8H for COM2. COM1 uses hardware interrupt 4, COM2 uses hardware interrupt 3.

Device Connection

Front panel RS232 interface on an 8-pin male A-coded M12 connector:

Pin Number	Signal	Remarks	
1	DCD*	Data Carrier Detect	
2	RXD	Receive Data	
3	TXD	Transmit Data	
4	DTR*	Data Terminal Ready	
5	GND		
6	DSR*	Data Set Ready	
7	RTS*	Request To Send	
8	CTS*	Clear To Send	

Tab. 12 Serial Port RS232 (M12)

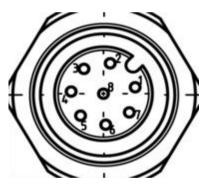


Fig. 8 Serial Port RS232 Pinout (M12 A-coded, male, front view)

RS232 interface on internal headers P41 and P42:

Mating connector type: Housing Molex 505565-1001, Crimp contacts Molex 505431-1000.

Recommended wire type: 26-28AWG, max insulation diameter 1.02mm.

Pin Number	Signal	Pin Number	Signal
1	DCD*	2	DSR*
3	RXD	4	RTS*
5	TXD	6	CTS*
7	DTR*	8	RI*
9	GND	10	+5V (not fused)

Tab. 13 Serial Ports RS232 on internal Headers P41, P42

Device Configuration

The default base address and interrupt configuration may be changed in CMOS setup SIO configuration.

3.3.7 CAN-FD interface

RSL81 features up to two CAN-FD controllers having assigned the base address and IRQ at boot time by the BIOS. Both CAN interfaces are factory configured for normal mode. It can be changed to Silent Mode (Listen only), preventing the interface to transmit on or disturb the connected CAN lines.

Device Connection

The CAN interfaces are available on one 8 pole A-coded female connector.

Pin Number	Signal	Pin Number	Signal
1	-	5	CAN1_L
2	-	6	CAN2_H
3	CAN1_GND	7	CAN2_L
4	CAN1_H	8	CAN2_GND

Tab. 14 Dual CAN port CAN1/CAN2 (M12)

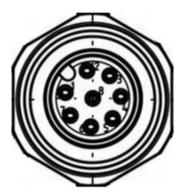


Fig. 9 Dual CAN Port Pinout (M12 A-coded, female, front view)

Device Configuration

The CAN transceiver operating mode can be configured with switch S17.

Switch S17	CAN1 transceiver operating mode	CAN2 transceiver operating mode
0	normal mode (receiver and transmitter enabled)	normal mode (receiver and transmitter enabled)
1	silent mode (receiver enabled, transmitter disabled)	normal mode (receiver and transmitter enabled)
2	normal mode (receiver and transmitter enabled)	silent mode (receiver enabled, transmitter disabled)
3	silent mode (receiver enabled, transmitter disabled)	silent mode (receiver enabled, transmitter disabled)
4-F	reserved	do not use

Tab. 15 CAN transceiver operating mode configuration

3.3.8 Watchdog

The watchdog timer is hardware configurable for 100ms or 1s shortest timeout. Longer timeouts may be achieved by programming the Watchdog Configuration Register.

Once timed out, it may activate the RSL81 hardware reset.

Configuration Options

Switch	Configuration	Remarks
S1	even positions '0', '2', '4', '6', '8' = 1 s	see Tab. 2.
	odd positions '1', '3', '5', '7' = 100 ms	see Tab. 2.

Tab. 16 Watchdog Configuration Options

3.3.9 GNSS

The GNSS function is supported by use of a complete and certified GNSS module NEO-M9V manufactured by u-Blox. Refer to the u-Blox web page for detailed information.

The Module is connected to an internal interface directly and appears as a virtual serial interface.

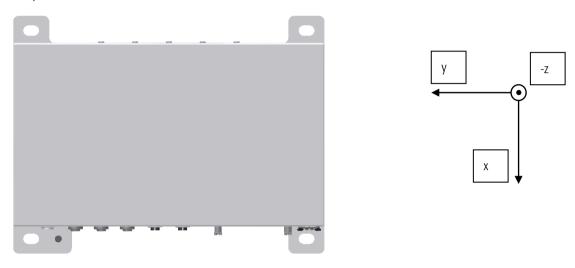
GPS antenna requirements	
Parameter	Specification
Connector Type Assembled	SMA
Antenna type	Active antenna or external LNA
LNA Supply Voltage	3.3V+/-10% with internal 10Ohm series resistor
LNA maximum Supply current	20mA
Required frequency range of Antenna	1575MHz GPS
	1598 1606MHz Glonass
	1561MHz BeiDou
	1560MHz 1591MHz Galileo
Required antenna impedance	50Ohms
Required antenna ESD Rating	4kV contact discharge, 8kV air discharge
Pin description	
Pin 1	Antenna
Shield	GND

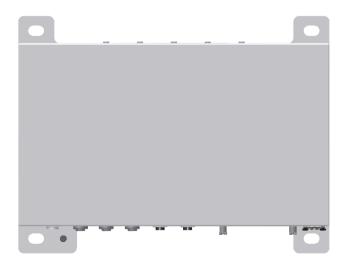
Tab. 17 GNSS Antenna requirement

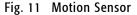
Important Note	
Do not shortcut the antenna input.	

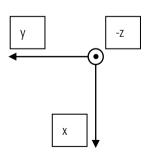
GNSS with Dead Reckoning

The GNSS module supports dead reckoning to provide position data even if there are no accurate satellite visibility available. Dead reckoning is available after an initialization phase where the internal sensors are calibrated. Refer to u-Blox documentation to get best performance.




Fig. 10 G-Sensors of GNSS ADR modul


Important Note


After a power cycle the GNSS module is required to get the current position before being able to calculate the current position according to its internal sensors.

3.3.10 Motion Sensor, Inertial Measurement Unit (IMU)

The integrated motion sensor ISM330DHCX provides a 3D accelerometer and a 3D gyroscope. The sensor can be configured and data can be read over the CPUs I2C interface. See ST Microelectronics ISM330DHCX datasheet for details.

RPC/RSL81xxx-XxxxE: user documentation DOC/RPC RSL81X-E; V1.4

3.3.11 LTE (optional)

An optional LTE Interface is provided by complete and certified M.2 key B LTE module. For detailed information refer to the module's documentation. The modem is connected to USB and appears as a virtual serial interface and as a virtual network interface.

The LTE antenna input is available on a designated SMA connectors. The antenna must match the requirements according to the module's documentation.

Important Note

The antennas for LTE may be harmful if people are exposed to the radiation for too long. Therefore place the antennas that way that there is always a distance of 45cm to places people stay.

Important Note

LTE Antennas must meet the requirements of the module's documentation. Especially check SWR, gain, maximum Power and impedance.

Important Note

The LTE Modem provides a diversity antenna input. It is required to disable the RX-Diversity antenna using AT-commands if this input is not connected to an antenna.

Important Note

Chassis and logic ground are connected (see also 7.1). Depending on the installation situation the use of DC blockers on the antenna ports might be necessary.

Important Note

Terminate unused ports with a 50Ω resistor

Important Note

At the place where the SIM-Cards are installed it may get up to +85°C. Make sure the inserted SIM Card fulfills this requirement to avoid errors.

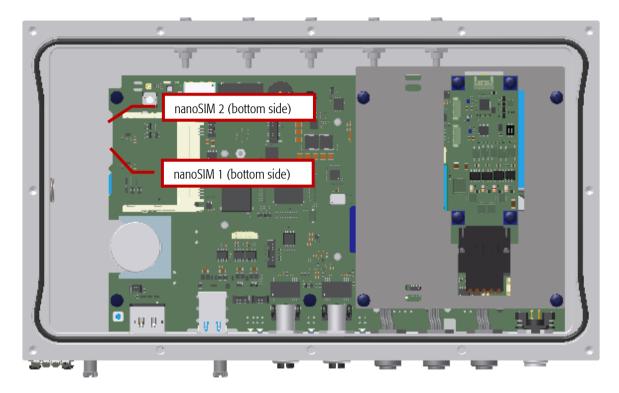


Fig. 12 Location of SIM Card holder

3.3.12 WLAN (optional)

An optional WLAN Interface is provided by complete and certified M.2 key E WLAN module. For detailed information refer to the module's documentation. The modem is connected to the PCI subsystem and appears as a standard WiFi network interface. The WLAN antenna input is available on two designated SMA-RP connectors. The antennas must match the requirements according to the module's documentation.

Important Note

The antennas for WLAN may be harmful if people are exposed to the radiation for too long. Therefore place the antennas that way that there is always a distance of 45cm to places people stay.

RPC/RSL81xxx-XxxxE: user documentation DOC/RPC_RSL81X-E; V1.4

Important Note

WLAN antennas must meet the requirements of the module's documentation. Especially check SWR, gain, maximum Power and impedance.

Important Note

Chassis and logic ground are connected (see also 7.1). Depending on the installation situation the use of DC blockers on the antenna ports might be necessary.

Important Note

Terminate unused ports with a 50Ω resistor

3.3.13 Digital IOs (optional)

The RML81 features 4 digital inputs and 4 digital outputs connected to an internal USB port. For detailed information please consult the separate IPC/DI4O4T-101E user's manual and resources on https://www.syslogic.com/eng/usb-mini-card-mit-acht-digital-io-79041.shtml.

Device Connection (RPC Variants, M12)

For the RPC variants, the DIO Interface is available on an 8-pin male A-coded M12 connector. Mating connector: any standard A-coded female M12 conformal connector

Pin Number	Signal	Remarks
1	Input A0	
2	Input A1	
3	Input A2	
4	Input A3	
5	Output B0	
6	Output B1	
7	Process Power (US)	common for all outputs
8	Process Ground (GNDS)	common for all i/o's

Tab. 18 DIO Process Interface Connector (M12)

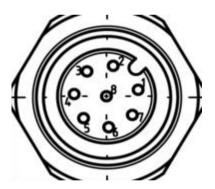


Fig. 13 DIO Pinout (M12 A-coded, male, front view)

Device Configuration

For detailed information please consult the separate IPC/DI4O4T-101E user's manual and resources on https://www.syslogic.com/eng/usb-mini-card-mit-acht-digital-io-79041.shtml.

3.3.14 RS485/RS422 Interface (optional)

The RML81 features one galvanic isolated serial interface configurable for RS485/RS422 half/full duplex operation. For detailed information please consult the separate IPC/USB485D-101E user's manual and resources on https://www.syslogic.com/eng/usb-seriell-konverter-usb-zu-rs422485-79207.shtml.

Device Connection

The pin assignment for half duplex is shown below.

Pin Number	Signal	Pin Number	Signal
1	no connection	6	no connection
2	no connection	7	no connection
3	DATA-	8	DATA+
4	no connection	9	no connection
5	GND		

Tab. 19 RS485 Interface Connector (DSUB9, half duplex)

The pin assignment for full duplex is shown below.

Pin Number	Signal	Pin Number	Signal
1	no connection	6	no connection
2	RX-	7	RX+
3	TX-	8	TX+
4	no connection	9	no connection
5	GND		

Tab. 20 RS485 Interface Connector (DSUB9, full duplex)

Device Configuration

For detailed information please consult the separate IPC/USB485D-101E user's manual and resources on https://www.syslogic.com/eng/usb-seriell-konverter-usb-zu-rs422485-79207.shtml.

3.3.15 Power supply

The processor and its peripherals are powered by an isolated or non-isolated, integrated power supply which generates all the necessary voltages.

The main power must be supplied to a 4 pole A-coded male M12 connector.

Mating connector type for P1: any standard A-coded male M12 connector with conformal electrical specification (voltage and current). Use AWG18/0.75mm² wires at minimum to comply with the safety requirements and follow the connector manufacturers instruction guide.

Pin Number	Signal	Remarks
1	GND	main ground (0V) connection
2	+24/36VDC	main power (24/36V nominal)
3	Power Fail/Remote on/off	Power fail input
4	AUX Power	reserved, leave open

Tab. 21 Power supply connector P1

For normal operation the external power supply has to be connected to the pins 2 (+24/36VDC) and 1 (GND) of the connector. Pin 4 (AUX Power) is reserved, leave open.

Pin 3 is used as an input for either a power fail or remote on/off signal.

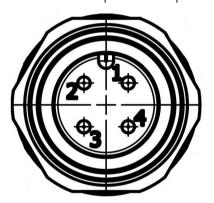


Fig. 14 M12 A-coded Male Pinout (front view)

Important Notes

Input current may vary significantly during operation. Make sure wire diameter are designed properly to remain within the specified operating voltage range.

3.3.16 Power supervision

The power management control unit (PCU) can be operated in two modes: power fail mode or remote on/off mode. The following two chapters describe their functionality in detail.

Switch S12	Configuration	Remarks
0	test mode (powerfail active)	
1	internal pulldown (remote on/off mode)	
2	internal pullup (power fail mode)	Factory setting
3-F	reserved	do not use

Tab. 22 Power fail input configuration

Switch S14	Configuration	Remarks
0	bypass mode (for power fail mode)	Factory Setting
1 to F	remote on/off mode.	Refer to Tab. 24

Tab. 23 Power fail mode configuration

3.3.17 Power Fail

In power fail mode the microcontroller monitors the external power fail signal. The state of power fail signal can be access through a status register, see programming section in chapter 4.

Application example

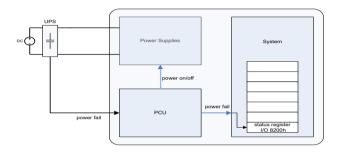


Fig. 15 Typical power fail application

The application has to poll the power fail flag and call different functions according to the state of the flag.

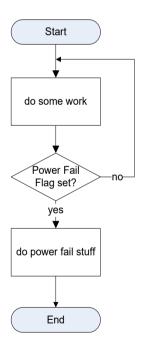


Fig. 16 Typical power fail flow

3.3.18 Remote On/Off

With the remote on/off function the system can be switched on and off through an external control signal. When active, the internal software goes from the run state into the shutdown state. After a predefined timeout the PCU switches the main power supply off. The timeout can be configured through S14. Mode 6-9 are controlled by a 250ms Impulse of the external control signal. Mode 6 and Mode 8 start up, when the power supply is supported. Mode 8 and 9 have the feature to do a hard power off when the Impulse is longer than 5 seconds.

For Mode A (user programmable), a special adapter from Syslogic is necessary which allows to program different timings via an internal serial interface (requires opening the enclosure).

Config switch \$14 position	t _{debounce_on} On debouncing (setup)	t _{debounce_off} Off debouncing (hold)	t _{startup} Hold time until switch off signal is routed to processor, if system is still booting	t _{hard_off} Timeout until switch off signal is generated from processor (after that hard off)
0	-	-	-	-
1	2 s	60 s	5 s	60 s
2	2 s	60 s	60 s	300 s
3	2 s	60 s	60 s	120 s
4	1 s	5 s	5 s	60 s
5	5 s	5 s	60 s	60 s
6	0 s	0 s	60 s	60 s
7	0 s	0 s	60 s	60 s
8	0 s	0 s	60 s	60 s
9	0 s	0 s	60 s	0 s
А	n/a	n/a	n/a	n/a
(user mode)				
B – F	n/a	n/a	n/a	n/a
(reserved)				

Tab. 24 PCU timing configuration through S14

When switch S14 is in position 0 the PCU is in bypass mode.

Please check the separate power management control whitepaper and sample code in the os board support package for details about the programming of the power management control unit.

https://www.syslogic.com/eng/white-papers_24442.shtml

Important Notes

The operating system must support the remote on/off function.

Application example

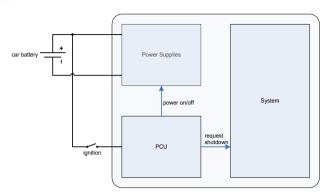


Fig. 17 Application example: CAR PC

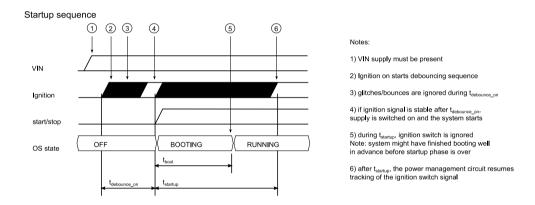


Fig. 18 Startup timing diagram

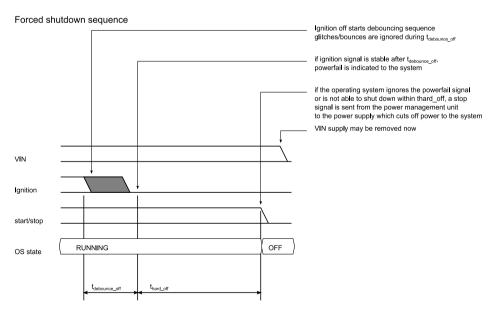


Fig. 19 Shutdown timing diagram

RPC/RSL81xxx-XxxxE: user documentation DOC/RPC_RSL81X-E; V1.4

3.3.19 Frontside Status LEDs

The twor colored LEDs on the left part of the front side show the following states:

Label	Color	Signal	Remarks
В	Red	STOP signal	for programming refer to Control register in chapter 4
R	Green	Board ready	for programming refer to Setup register in chapter 4

The LEDs beside the LAN connectors show status information of the corresponding LAN interface which is dependent on the driver used.

Two optional LEDs could be installed behind the service cover:

Label	Color	Signal	Remarks
Α	Green	Aux LED	for programming refer to Setup register in chapter 4
D	Yellow	Disk activity	SATA/CFast only

4 Programming Information

4.1 Overview

The programming of the RSL81 board is done with standard memory and I/O read and write operations. Most configuration options are handled by the BIOS. For detailed information refer to the NETIPC firmware documentation and other related documents as listed in paragraph 1.4.

Please contact Syslogic technical support if you need special BIOS configuration.

4.2 Interrupt, Memory and I/O Resources

4.2.1 Interrupt Resources

The following table shows the usage of the interrupt resources. Interrupts marked 'free' are not used by onboard devices if they are not assigned to a PCI device in the BIOS configuration.

Interrupt	Interrupt Source	Remarks
Master		
IRQ0	Timer Channel 0	
IRQ1	reserved for PS/2-Controller (Keyboard)	SIO, check CMOS setup
IRQ2	Slave Interrupt Controller Cascading	
IRQ3	available for PCI or COM2	SIO, check CMOS setup
IRQ4	available for PCI or COM1	SIO, check CMOS setup
IRQ5	available for PCI or COM4	SIO, check CMOS setup
IRQ6	available for PCI	check CMOS setup
IRQ7	available for PCI or LPT1	SIO, check CMOS setup
Slave		
IRQ8	Real Time Clock	
IRQ9	ACPI/PCI	do not connect
IRQ10	available for PCI or COM3	SIO, check CMOS setup
IRQ11	available for PCI	check CMOS setup
IRQ12	available for PCI or PS/2-Controller	SIO, check CMOS setup
IRQ13	Floating Point Unit	
IRQ14	Primary IDE/SATA Channel in legacy mode	do not connect
IRQ15	available for PCI	check CMOS setup
Special		
NMI	Watchdog	

Tab. 25 Interrupt Usage

4.2.2 Memory Resources

The general memory layout is shown in paragraph 3.2.1 . The configuration of the memory layout is done by programming processors internal configuration registers and board configuration registers (see paragraph 4.2.3). This is done completely by the BIOS on system startup and must not be changed during operation. For operating systems requiring memory configuration (e.g. Windows CE) the memory layout shown in paragraph 3.2.1 must be considered.

4.2.3 I/O Resources

This paragraph describes only the RSL81 system register and support functions not directly related to a specific peripheral device. The general I/O layout is shown in paragraph 0. Peripheral devices are discussed in paragraph 3.3.

Address	Device / Register	Remarks
8200H	Status Register	
8201H	Control Register	Reset state = 05H
8202H	Function ID Register	
8203H	Watchdog Configuration Register	Reset state = 80H
8204H	Option ID Register	
8205H	Setup Register	Reset state = 00H
8206H	Revision ID Register	
8207H	Socket Memory Configuration Register	not supported
8208H	Socket Memory Window Mapping Register	not supported
8209H	Socket Memory Window Base Address Register	not supported
820AH	Boot Mode Input Register	
820BH	I2C Register for Temp Sensor	
820CH	Configuration Switch Input register	
820DH	PWM-Register for LCD Inverter Brightness Control	not supported
820E821FH	reserved	do not access

Tab. 26 RSL81 System Registers

Status Register 8200h

D7	D6	D5	D4	D3	D2	D1	D0	Access
OVRTMP#	LOBAT#	1	WDG#	ERRFLG#	ATTFLG#	ERRINT#	PWRFAIL#	Read
reserved						Write		
1111'1111 (0xFF)						Reset		

Description:

OVRTMP# Temperature Sensor Status Flag

Read	Write
0 = programmed temp. limit reached	
1 = temperature ok (below limit)	

LOBAT# Battery Status Flag

Read	Write
0 = Battery voltage low	
1 = Battery voltage ok	

WDG# Watchdog Status Flag

Read	Write
0 = Watchdog has timed out	
1 = Watchdog running or disabled	
Reset by issuing a hardware reset (see	
register 8204hex)	

ERRFLG# Error Status Flag (for polled applications)

Read	Write
not used, returns 1	

ATTFLG# Attention Status Flag (for polled applications)

Read	Write
not used, returns 1	

ERRINT# Error Interrupt Status

Read	Write
0 = Error Interrupt pending	
1 = No error interrupt pending	

PWRFAIL# Power Fail Status Flag

Read	Write
0 = Power fail occurred	
1 = No power fail occurred	

Reserved, always write 0

Control Register 8201h

D7	D6	D5	D4	D3	D2	D1	D0	Access
TRIG#	WDTRIG	WDNMI	STOP	TRGSRC	FREEZE	ERREN#	ATTEN#	Read
TRIG#	WDTRIG	WDNMI	STOP	TRGSRC	FREEZE	ERREN#	ATTEN#	Write
0000′0101 (05h)			Reset					

Description:

TRIG# Bus Trigger (currently not supported)

Read	Write
readback of written value	

WDTRIG Watchdog Trigger

ReadWritereadback of written valueAny state change triggers the watchdog.

WDNMI Watchdog NMI Configuration

Read	Write
0 = Watchdog activates hardware reset	0 = Watchdog activates hardware reset
1 = Watchdog timeout activates Non	1 = Watchdog timeout activates Non
Maskable Interrupt (NMI)	Maskable Interrupt (NMI)

STOP Stop# Signal/LED State

Read	Write
0 = STOP# inactive (high), red LED off	0 = STOP# inactive (high), red LED off
1 = STOP# active (low), red LED on	1 = STOP# active (low), red LED on

TRGSRC Trigger source selection

Read	Write
not used, returns 0	

FREEZE Freeze bit

Read	Write
not used, returns 1	

ERREN# Error Interrupt Enable (PC/104 bus IOCHCK# routed to NMI)

Read	Write
always 0 = Error Interrupt on NMI always	
enabled	

ATTEN# Attention Interrupt Enable

Read	Write
not used, returns 1	

RPC/RSL81xxx-XxxxE: user documentation DOC/RPC_RSL81X-E; V1.4

The STOP# signal directly drives the red LED on the front (STOP# low = LED on).

Upon startup STOP# is active (LED on) until the BIOS has initialized the main peripherals, it is set inactive (LED off) before booting the operating system. STOP# is also active (LED on) while operating in Bootloader mode.

Function ID Register 8202h

D7	D6	D5	D4	D3	D2	D1	D0	Access
	FID[7:0] Function ID							Read
reserved, always write 0							Write	
same as Read value							Reset	

Description:

FID Function ID

Read	Write
51h = general IPC processor board	reserved, always write 0

Watchdog Configuration Register 8203h

D7	D6	D5	D4	D3	D2	D1	D0	Access
WDLOCK	0	0	0	WDT	OUT[3:0] Watch	dog Timeout Sele	ction	Read
WDLOCK	reserved	reserved	reserved	ved WDTOUT[3:0] Watchdog Timeout Selection				Write
	1000'0000 (80h)							Reset

Description:

WDLOCK Watchdog Lock Flag (prevents disabling running Watchdog)

Read	Write
0 = Inactive, not locked	0 = do not lock
1 = Active, locked	1 = lock WDEN

WDTOUT Watchdog Timeout Selection

Read	Write
0 = 1s if S1=even, 100ms if S1=odd	0 = 1s if S1=even, 100ms if S1=odd
1 = 4s	1 = 4s
2 = 8s	2 = 8s
3 = 16s	3 = 16s
4 = 32s	4 = 32s
5 = 64s	5 = 64s
6 = 128s	6 = 128s
7 = 256s	7 = 256s

reserved Reserved, always write 0

Note

Watchdog timeout selection values > 0 are independent of switch S1 setting.

RPC/RSL81xxx-XxxxE: user documentation DOC/RPC_RSL81X-E; V1.4

Option ID Register 8204h

D7	D6	D5	D4	D3	D2	D1	D0	Access
OID[7:0] Option ID								Read
reserved, always write 0								Write
same as Read value								Reset

Description:

OID Option ID

Read	Write
D4h = RSL8/RSL81	A5h = Writing data A5h invokes a complete
	hardware reset (also clearing the Watchdog
	timeout status bit)
	5Ah = Writing data 5Ah invokes a complete
	power off or power reset (also clearing the
	Watchdog timeout status bit), system restarts
	depending on configuration of power
	management controller.

Setup Register 8205h

D7	D6	D5	D4	D3	D2	D1	D0	Access
READY	WDEN	AUX	0	0	USBEN2	USBEN1	USBENO	Read
READY	WDEN	AUX	0	0	USBEN2	USBEN1	USBENO	Write
	0000′0111 (07h)							Reset

Description:

READY Ready bit, green LED

Read	Write
0 = Inactive, green LED off	0 = Deactivate green LED
1 = Active, green LED on	1 = Activate green LED

WDEN Watchdog enable

Read	Write
0 = Watchdog disabled	0 = Disable watchdog
1 = Watchdog enabled (running)	1 = Enable watchdog

AUX Auxiliary LED, green LED

Read	Write
0 = Inactive, green AUX LED off	0 = Deactivate green AUX LED
1 = Active, green AUX LED on	1 = Activate green AUX LED

USBEN2 USB4/5 Power enable

Read	Write
0 = USB5/6 power off	0 = disable USB5/6 power
1 = USB5/6 power on	1 = enable USB5/6 power

USBEN1 USB2/3 Power enable

Read	Write
0 = USB3/4 power off	0 = disable USB3/4 power
1 = USB3/4 power on	1 = enable USB3/4 power

USBENO USBO/1 Power enable

Read	Write
0 = USB1/2 power off	0 = disable USB1/2 power
1 = USB1/2 power on	1 = enable USB1/2 power

The READY signal directly drives the green LED on the front (READY high = LED on).

Upon startup READY is inactive (LED off) until the BIOS has initialized the main peripherals, it is set active (LED on) before booting the operating system.

Always read back the current state before programming this setup register for enabling the watchdog!

RPC/RSL81xxx-XxxxE: user documentation DOC/RPC_RSL81X-E; V1.4

Important Note

Be careful when disabling USB power by setting USBENx=0 since this will disable any all devices connected to the two related USB ports. Always use a program sequence which automatically reenables USB power some seconds later.

Revision ID Register 8206h

D7	D6	D5	D4	D3	D2	D1	D0	Access
RID[7:0] Revision ID				Read				
reserved, always write 0 Write				Write				
same as Read value Reset								

Description:

RID Logic Design Revision ID

Read	Write
see Product Revision History	

reserved Reserved, always write 0

 $RPC/RSL81xxx-XxxxE:\ user\ documentation$

DOC/RPC_RSL81X-E; V1.4

Status Register 820Ah

D7	D6	D5	D4	D3	D2	D1	D0	Access
0	0	0	0	0	0	BM1	ВМО	Read
			rese	rved				Write
0000'0011 (0x03)					Reset			

Description:

BM1..0 Boot Mode Inputs

Read	Write
0 = reserved	
1 = reserved	
2 = boot from backup BIOS	
3 = normal Operating Mode	

Reserved reserved, do not write

I2C Register 820Bh for temperature sensor control

D7	D6	D5	D4	D3	D2	D1	D0	Access
SCLO	SDAO	SCL	SDA	1	1	1	1	Read
SCLO	SDAO			Reserved, al	ways write 1			Write
FFh				Reset				

Description:

SCLO Clock Port Output State

Read	Write
0 = Pin state = low	0 = Output latch state = low
1 = Pin state = high	1 = Output latch state = high
	(open collector)

SDAO Data Port Output Port Latch State

Read	Write
0 = Pin state = low	0 = Output latch state = low
1 = Pin state = high	1 = Output latch state = high
	(open collector)

SCL Clock Port Pin State

Read	Write
0 = Pin state = low	
1 = Pin state = high	

SDA Data Port Pin State

Read	Write
0 = Pin state = low	
1 = Pin state = high	

RPC/RSL81xxx-XxxxE: user documentation DOC/RPC_RSL81X-E; V1.4

Configuration Switch Input Register 820Ch

D7	D6	D5	D4	D3	D2	D1	D0	Access
0	0	0	0	S1-D3	S1-D2	S1-D1	S1-D0	Read
reserved								
xxxx/xxxx (0xXX)								Reset

Description:

D3-0 Configuration Switch S1 Inputs

Read	Write
S1 state (0-F)	

D7-4 Configuration Switch Inputs

Read	Write
0 (reserved)	

Reserved, do not write

4.3 Peripheral Devices

4.3.1 DisplayPort-Interface

The DisplayPort interface uses the standard PC/AT VGA register set. For detailed programming information please refer to the IBM PC/AT Technical Reference or similar documentation.

Low level programming is handled by the VESA compatible VGA-BIOS.

For detailed programming information please refer to the Intel Atom E39xx technical reference or similar documentation. Legacy support and low level programming is handled by the BIOS and standard OS drivers.

4.3.2 SATA/CFast-Interface

For detailed programming information please refer to the Intel Atom E39xx technical reference or similar documentation. Legacy support and low level programming is handled by the BIOS and standard OS drivers.

4.3.3 Ethernet Interface

The Ethernet interfaces use the Intel I210IT Gigabit Ethernet Controller. For detailed programming information and drivers check www.intel.com.

4.3.4 USB Interface

The USB interfaces use the standard OHCI/EHCI/XHCI register set. Legacy support and low level programming is handled by the BIOS and standard OS drivers.

4.3.5 Serial Ports

The Serial Port interfaces use the standard PC/AT register set. The Serial Port controller is compatible with the standard 16C550A UART with 16 byte receive and transmit fifos. For detailed programming information please refer to the IBM PC/AT Technical Reference, the Microchip/SMSC SCH3222 datasheet or similar documentation. Legacy support and low level programming is handled by the BIOS and standard OS drivers.

4.3.6 CAN-FD Interface

The CAN-FD interfaces use the PEAK System CAN-FD implementation. OS support and low level programming is handled by the standard PEAK-System OS drivers.

4.3.7 LTE Interface

For detailed programming information please refer to the LTE module manufacturer's technical reference or similar documentation.

4.3.8 WLAN Interface

For detailed programming information please refer to the WLAN module manufacturer's technical reference or similar documentation.

4.3.9 GNSS Interface

For detailed programming information please refer to the GNSS module manufacturer's technical reference or similar documentation.

4.3.10 Motion Sensor, Inertial Measurement Unit (IMU)

The integrated motion sensor ISM330DHCX provides a 3D accelerometer and a 3D gyroscope. The sensor can be configured and data can be read over the CPUs I2C interface (slave address 1101010b). See ST Microelectronics ISM330DHCX datasheet and Syslogic sample code for details.

4.3.11 Temperature Sensor

The Temperature Sensor is built up using an LM75 compatible temperature sensor programmable through an I2C interface. The I2C interface programming is done through the I2C Register of the RSL81. For detailed programming information please refer to the National Semiconductor LM75 datasheet or similar documentation.

Poweron default setting for OVERTMP* is 80°C chip temperature.

4.3.12 Watchdog

The watchdog is disabled by default on poweron and must be enabled by the application program.

Before enabling the watchdog by setting the WDEN bit in the RSL81 Setup Register, the watchdog action (RESET or NMI) must be programmed in the RSL81 Control Register (bit WDNMI) and the timeout value must be configured using switch S1 and/or the RSL81 Watchdog Configuration Register.

If RESET activation is selected, the watchdog generates a hardware reset if it is not triggered within the configured timeout window by writing the WDTRIG bit in the RSL81 Control Register. The application must check the WDG* bit in the RSL81 Status Register uppon startup to identify the Watchdog as the source of the reset, and it must issue a hardware reset (by writing the value 0a5h to the RSL81 Option ID Register) to clear the WDG* flag. Otherwise the system resets again as soon as the Watchdog is started.

If NMI activation is selected, the watchdog generates a Non Maskable Interrupt to the processor if it is not triggered within the configured timeout window by writing the WDTRIG bit in the RSL81 Control Register. Note that enabling the NMI input of the processor also requires setting bit 7 of I/O port 70h (NMI mask) and clearing bit 3 of I/O port 61h (Port B IOCHK# enable). The NMI routine must check the WDG* bit in the RSL81 Status Register to identify the watchdog as the source of the NMI, and it must issue a hardware reset (by writing the value 0a5h to the RSL81 Option ID Register) to clear the WDG* flag. Otherwise the NMI routine is entered again as soon as the watchdog is started.

Sample code showing the initialization and triggering of the watchdog is available for RESET and NMI mode in the free IPC/IOCOMSW-1A package.

Note

The NMI mask bit (bit 7 of I/O port 70h) is write only. Typically it is enabled by the BIOS and should not be disabled by application software.

4.3.13 Digital IOs (optional)

The 4 digital inputs and 4 digital outputs are connected to an internal USB port. For detailed information please consult the separate IPC/DI4O4T-101E user's manual and resources on https://www.syslogic.com/eng/usb-mini-card-mit-acht-digital-io-79041.shtml.

4.3.14 RS485/RS422 Interface (optional)

The RS485/RS422 half/full duplex interface is connected to an internal USB port. For detailed information please consult the separate IPC/USB485D-101E user's manual and resources on https://www.syslogic.com/eng/usb-seriell-konverter-usb-zu-rs422485-79207.shtml.

5 Installation and cabling

5.1 Introduction

Installation and cabling of the RSL81 system has to be done with great care; the correct cabling is essential for high operational reliability and the correct grounding is necessary for protection. To meet the requirements of "CE"-certification all cables have to be shielded. The enclosure has to be connected to ground via the mounting kit.

Important notes

To meet the requirements of EMI/RFI "CE"-certification, correct mounting, installation and cabling of the RSL81 system according to these guidelines is absolutely necessary.

5.2 Protective Earth

Also not required for safety reason because of the low supply voltage, it is highly recommended to connect the earth bolt on the base plate to protective earth with at least 2.5 mm² wire gauge.

RPC/RSL81xxx-XxxxE: user documentation DOC/RPC RSL81X-E; V1.4

5.3 Powering the RSL81 System

The "logic supply voltage", i.e. the power driving the electronic circuits (CPU and base board) is internally generated from the 24/36VDC power supply input. Depending on the Product-Type the power supply is isolated or non-isolated (please check chapter 2.2).

The power supply has to be connected according to paragraph 3.3.15. Maximum allowed cable length between ac/dc power supply and system power input is 30 m. If the cable is longer than 30 m or routed outside the building, special overvoltage and filtering elements have to be installed to comply with the requirements of EMI/RFI "CE"-certification. Use AWG18/0.75mm² wires at minimum to comply with the safety requirements and follow the connector manufacturers instruction guide.

When selecting the external power supply the maximum power dissipation of the system has to be considered.

Important notes

Please make sure that the input voltage does not exceed the recommended operating range otherwise the electronics board could get damaged and correct operation cannot be guaranteed.

Use an overload protected power supply to prevent damage in case of a short inside the system.

The ac/dc power supply must fulfill the requirements for EMI/RFI "CE"-certification.

5.4 Cabling the interfaces

Use appropriate cabling for all interfaces. Shielded cabling is required to meet the EMI/EMC limits.

5.5 SIM Card Installation

For SIM Card installation the bottom plate of the system must be removed completely by using a socket key number 3. It is highly recommended to shut down the system and remove power before removing the service cover.

After having pushed the locking slider downside, the SIM card must be pushed in completely and secured by pulling the locking slider back up.

To remove the SIM card, the locking slider has to be pushed down. Then a short push on the SIM card will activate an ejection mechanism, making the card accessible for pulling it out of the card holder.

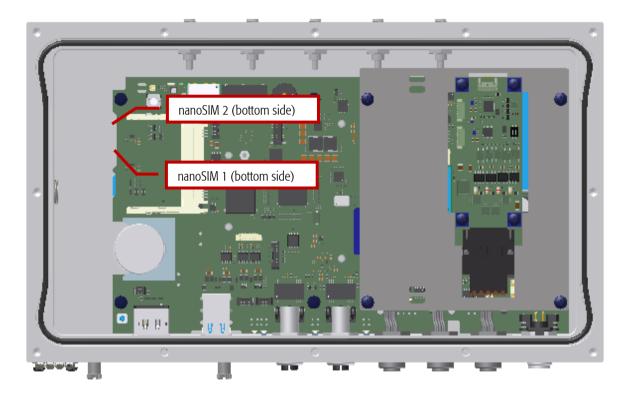


Fig. 20 SIM card installation

The bottom plate has to be mounted before reapplying power and restarting the system:

1. Make sure the gasket is still in the groove around the device opening

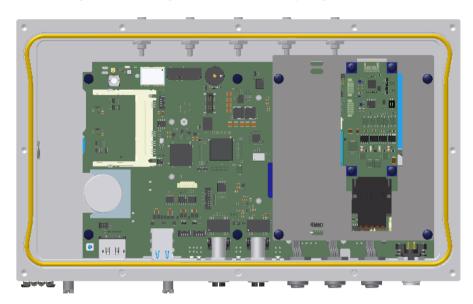


Fig. 21 Check device gasket

- 2. Re-attach the cover and secure with the 12 screws
 - a. Make sure the blue securing patch on the screws is still intact

 The sealing O-ring is made for re-using multiple times without losing its sealing characteristic, provided it is

 clean
 - b. Use a socket key number 3
 - c. Mounting torque: 2Nm

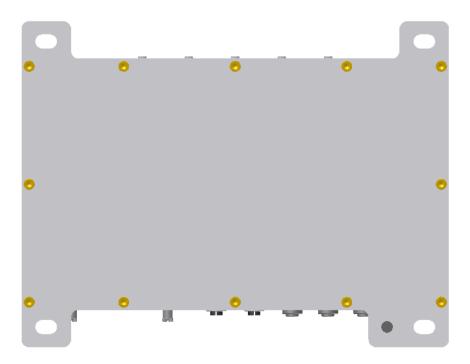


Fig. 22 Secure the cover

5.6 Grounding

In some cases it is recommended to connect the shields of the cables to chassis potential at the entry point into the housing cabinet as shown in Fig. 23. If the cables enter a hermetically closed cabinet, use special 360 degree metal clamps (EMI/RFI protected types which contact to the cable shield).

Important notes

Grounding of the cables shields using "pig-tail wires" are not recommended because of their high impedance at high frequencies. It is better to clamp the shields onto a grounded copper rail.

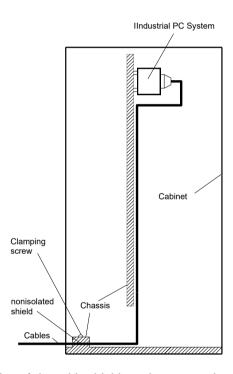


Fig. 23 Additional grounding of the cable shields at the entry point of a cabinet.

5.7 Cabling of communication links

If the communication ports are unisolated ports, cable shields have to be connected to chassis potential on both sides of the interconnection cable. If the cable is very long, a thick copper wire (10 mm²) for potential adjustment is highly recommended. Fig. 24 shows a non-isolated system with common chassis ground.

Some of the communication ports are galvanically isolated ports. In such cases the shield of the interconnection cable must be wired to chassis potential only on one side of the cable.

Fig. 25 shows an isolated system with independent grounds.

Important notes

Grounding of cable shields using "pig-tails wires" are not recommended because of their high impedance at high frequencies. It is recommended to clamp the shields onto a grounded copper-rail.

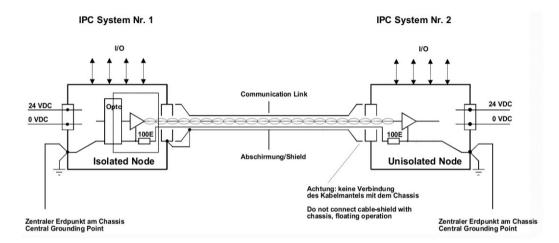


Fig. 24 Isolated communication link

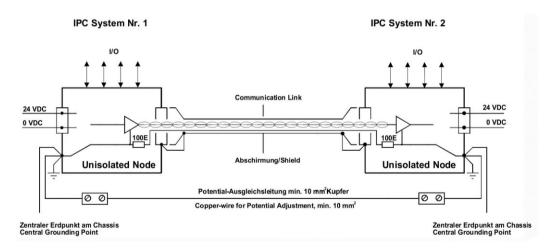


Fig. 25 Non isolated communication link with common chassis potential

6 Service

6.1 Replaceable Parts

This RSL81 system contains the following replaceable parts:

- CFast flash card, uSDcard flash card
- Main fuse
- Lithium battery (only some product variants)

To replace the flash card power off the system and remove the bottom plate (see 5.5). After having unlocked the clip, the flash card may be removed. When inserting a new flash card be sure that it is fully compliant with the CFast standard. Syslogic highly recommends CFast flash cards specified for industrial use by the card manufacturer. Check temperature range and durability to comply with your requirements.

The main fuse protects the system against destruction in case of high energy distortions on the power line. For replacement, the system must be opened in an ESD protected environment. Only an entitled instructed person is allowed for this operation. Replacement fuse type is Littlefuse 0452004.MRL (4A slow-blow).

To replace the battery power off the system and remove the bottom plate (see 5.5). Pull out the battery carefully. Replacement battery must be one of the following types:

- Renata CR2450N (3V, 540mAh)
- Renata CR2477N (3V, 950mAh)

Because the self-discharge of all Lithium Batteries increases rapidly at high temperatures the battery life time decreases by a great amount. To prevent battery leakage scheduled service/replacement is recommended. Please contact the battery manufacturer for further details and calculation assistance for battery life time calculation.

Safety warnings and installation guidelines must be followed according to paragraphs 1.7, 1.9 and 5.

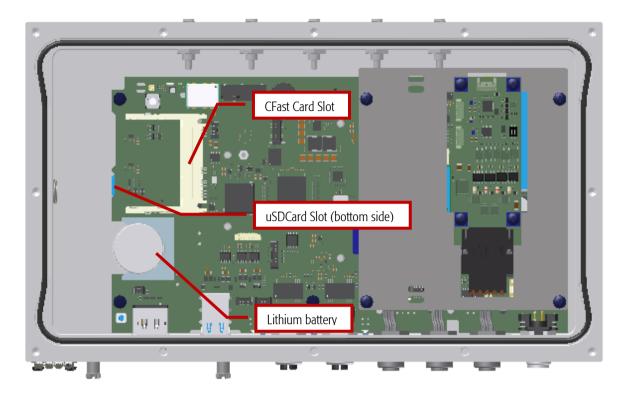


Fig. 26 Service parts replacement

Remount the bottom plate (see 5.5) before reapplying power and restarting the system.

6.2 Cleaning the metal housing

For cleaning the metal housing please use a soft cloth and a metal detergent (MS-260 from Miller-Stephenson, Isopropyl, denatured alcohol or similar)

Do not use a coarse scouring cloth, scouring powder or solvent (e.g. Aceton).

Cleaning should only be carried out when the device is switched off!

Make sure the device has cooled down to room temperature

7 Technical Data

7.1 Electrical Data

Important Note

Do not operate the RSL81 system outside of the recommended operating conditions. Otherwise lifetime and performance will degrade. Operating the board outside of the absolute maximum ratings may damage the hardware.

Absolute Maximum Ratings (over free-air temperature range)

Parameter	Symbol	min	nom	max	Unit
general parameters					
power supply voltage	Vcc	-0.5		45.0	Vdc
isolations					
power supply to chassis (AC, 60s, 500m a.s.l., Ta=25°C) (1,2)		1000			Vrms
power supply to logic (AC, 60s, 500m a.s.l., Ta=25°C) (1,2)		1000			Vrms
isolation Ethernet to chassis (AC, 60s, 500m a.s.l., Ta=25°C) (1)		500			Vrms
isolation Ethernet to logic (AC, 60s, 500m a.s.l., Ta=25°C) (1)		500			Vrms
isolation LAN1 to LAN2 (AC, 60s, 500m a.s.l., Ta=25°C) (1)		500			Vrms
isolation CAN to chassis (AC, 60s, 500m a.s.l., Ta=25°C) (1)		500			Vrms
isolation CAN to logic (AC, 60s, 500m a.s.l., Ta=25°C) (1)		500			Vrms
isolation CAN1 to CAN2 (AC, 60s, 500m a.s.l., Ta=25°C) (1)		500			Vrms
isolation resistance CAN to chassis (500Vdc, Ta=25°C) (1)		0.9	1.0		MOhm
isolation resistance all others to chassis (500Vdc, Ta=25°C) (1)		20			MOhm
creepage distances:					
power supply to chassis/logic (1)		1.0			mm
(1) note: chassis and logic ground are connected					
(2) note: isolated product variants only					
temperature range					
operating free-air temperature (Ambient)	Ta	-40		70	°C
storage temperature range	Tst	-40		85	°C

Tab. 27 General Absolute Maximum Ratings

Recommended Operating Conditions

Parameter	Symbol	min	nom	max	
general parameters					
power supply voltage (non-isolated product variants)	Vcc	8.4	12/24/36	45.0	Vdc
power supply interruption class (EN50155)			See Tab. 1		
temperature range					
operating free-air temperature (Component Level)	Ta	-40		85	°C
operating free-air temperature (Ambient)					
50% CPU load, low GPU load (1)	Ta	-40		70	°C
operating temperature class (EN50155) (1)	Ta		TX/OT4		

⁽¹⁾ this parameter is highly dependent on mounting, air flow and GPU load; with the Intel SpeedStep technology the processor automatically reduces the internal cpu clock down to 500MHz when the critical thermal trip points are reached to prevent damage.

Tab. 28 General Recommended Operating Conditions

Electrical Characteristics (over recommended operating range, unless otherwise noted)

Parameter	Symbol	min	typ	max	Unit
general parameters					
full load power dissipation (worst case, no external loads) (1)	Pmax		15	19	W
power supply current (Vcc=16.8V, no external loads) (2)	lp		0.6		A
power supply current (Vcc=36V, no external loads) (2)	lp		0.4		Α
power supply current (shutdown state)	lp(off)		6	10	mA
under-voltage lockout	Vuvlo		14		V
power fail / remote on/off					
inactive state, powerfail application (S12=2)	V(PFhigh)	3	open	Vp	V
active state, powerfail application (S12=2)	V(PFlow)	-0.5		1.5	V
input current, active state, powerfail application (S12=2)	I(PFlow)			-5	mA
active state, ignition switch application (S12=1)	V(Rhigh)	10		Vp	V
inactive state, ignition switch application (S12=1)	V(Rlow)	-0.5	open	5	V
input current, active state, ignition switch application (S12=1)	I(Rhigh)			3	mA
Real Time Clock backup (GoldCap Variants)					
Backup time with fully charged GoldCaps	t(rtcbup)		36		h
Powered time required for charging the GoldCaps to 90%			15		min
Powered time required for charging the GoldCaps to 95%			1		h
LOBAT# trip point (Status Register Flag)		2.35	2.5	2.65	V
VRT trip point (RTC Valid RAM and Time Flag)			1.3		V
Real Time Clock backup (Battery Variants)					
Vbatt loading (Vcc=off)	lbat(off)		4	5	uA
Vbatt loading (Vcc=on)	lbat(on)		2	4	uA
Backup time with new CR2450N battery (Ta=25°C)	t(rtcbup)	6	7		years
Backup time with new CR2450N battery (Ta=50°C)	t(rtcbup)	3	3.5		years
Backup time with new CR2477N battery (Ta=25°C)	t(rtcbup)	8	9		years
Backup time with new CR2477N battery (Ta=50°C)	t(rtcbup)	3.5	4		years
LOBAT# trip point (Status Register Flag)		2.35	2.5	2.65	V
VRT trip point (RTC Valid RAM and Time Flag)			1.3		V
USB Overcurrent Limit					
USB3 on internal connector P21	llimit			2.8	Α
USB1/2 on connector P20	llimit	1.1		2.1	Α
all other USB connectors	Ilimit	1.0		2.7	A
 (1) this parameter is highly dependent on mounting, air flow a processor automatically reduces the internal cpu clock down to prevent damage (2) 50% CPU load, low GPU load 			•		

Tab. 29 General Electrical Characteristics

Switching Characteristics (over recommended operating range, unless otherwise noted)

Parameter	Symbol	min	nom	max	
processor characteristics					
processor clock (IPC/RSL81I20-xxx)	fcpu		1.6	2	GHz
communication interface characteristics					
LAN1/LAN2 baud rate			10/100/1000		Mbit/s
CAN1/CAN2 data rate (ISO 11898-2 classical HS-CAN)				1	Mbit/s
CAN1/CAN2 data rate (ISO 11898-2 CAN-FD)				5	Mbit/s
UART base clock	fuart		1.8459		MHz
COM1/2 baud rate				115.2	kbaud
timer/clock characteristics					
Watchdog timeout (short period)	Tw	70	100	140	ms
Watchdog timeout (long period)	Tw	0.7	1	1.3	S
Watchdog timeout (programmable)	Tw	1		256	S
Timer base clock	ftimer		1.19318		MHz
Timer base clock accuracy				+/-100	ppm
Timer base clock aging				+/-5	ppm/year
Real Time Clock base clock	frtc		32.768		kHz
Real Time Clock accuracy (25°C)				+/-20	ppm
Real Time Clock temperature coefficient				-0.04	ppm/(°C) ²
Real Time Clock aging				+/-3	ppm/year

Tab. 30 General Switching Characteristics

Wireless operating conditions and characteristics (over recommended operating range, unless otherwise noted)

Please check module manufacturer documentation for detailed operating conditions and characteristics (<u>www.ublox.com</u>, <u>www.sierrawireless.com</u>).

7.2 EMI/EMC Data

Important Note

The RSL81 system is a class A system for railway and industrial applications. It is not indented for use in residential or home applications.

The RSL81 has been designed to comply with the following EMC standards:

- EN 50121-3-2	Railway applications - Electromagnetic compatibility - Rolling stock - Apparatus
- EN 50121-4	Railway applications - Electromagnetic compatibility – Signalling and Telecommunications Apparatus
- EN 55032 class A	Electromagnetic compatibility of multimedia equipment - Emission Requirements Limits and methods of measurement
- EN 55035	Electromagnetic compatibility of multimedia equipment - Immunity requirements
- EN 301 489-1	Electromagnetic compatibility and Radio spectrum Matters (ERM); ElectroMagnetic Compatibility - (EMC) standard for radio equipment and services

7.3 Environmental specification

The RSL81 has been designed to meet the following standards:

- EN 61373 cat 1 class B	Railway application – Rolling stock equipment: Shock and vibration tests
- EN 50155 class OT4/TX	Railway applications - Rolling stock - Electronic equipment
- EN 60068-2-27	Environmental testing – Part 2-27: Test Ea and guidance: Shock
- EN 60068-2-64	Environmental testing – Part 2-64: Test Fh: Vibration, broadband random and guidance

7.4 Safety and Fire Protection

The RSL81 has been designed to meet the following standards:

- EN 62368-1 Audio/video, information and communication technology equipment - Part 1:

Safety requirements

- EN 45545-2 HL3 Fire protection on railway vehicles – Part 2:

Requirements for fire behavior of materials and components

7.5 Reliability (MTBF)¹

MTBF in hours, according to Telcordia SR-332 Issue 4 (Parts count method), Ambient temperature 25°C, excluding maintenance parts (e.g. battery)

Device	Symbol	Ground Ground		Ground	
		Benign	Fixed	Mobile	
processor characteristics					
RPC/RSL81I20-A154E	MTBF	~338′172	~220′498	~139′900	hours

Tab. 31 MTBF values

A reliability prediction is a theoretical estimation based on the bill of materials of the device and the component reliability data provided by suppliers (if available). Though these prediction methods are widely utilized and accepted, they have several limitations that must be known and accepted. The prediction is based on the component's reliability only, other elements like board and solder joints are not considered.

MTBF rates are dramatically affected by the use case. Do not make assumptions about the reliability of the product without considering the specific use case.

7.6 Mechanical Data

Parameter	Symbol	min	nom	max
Device width	W		276	mm
Device height	Н		58	mm
Device depth (without connectors)			210	mm
Weight	Mtot		3.0	kg

Tab. 32 Mechanical specification RPC/RSL81I20-A154E

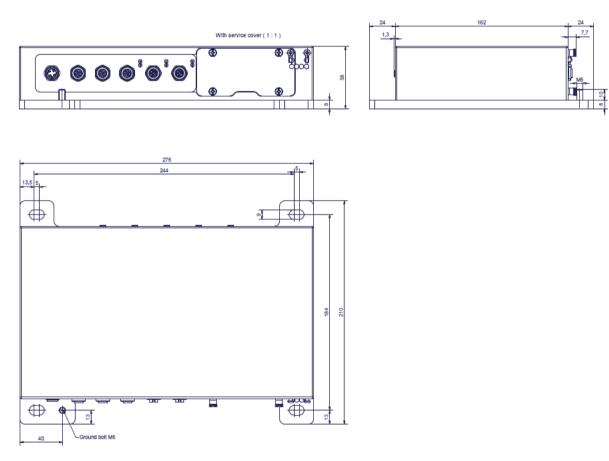


Fig. 27 Mechanical Outline Enclosure RPC/RSL81I20-A154E

8 Firmware

8.1 Software Structure

The x86 CPU board based system is based on the following software structure:

BIOS (Basic Input/Output System)

- Power On Self Test (POST)
- Initialization of standard peripheral devices
- Boot procedure for the Operating System

Note: Refer to the BIOS documentation for detailed information

OS (Operating System)

- Initialization of additional peripheral devices
- Start procedure for the Application Programs

Note: Refer to the OS documentation for detailed information

Application Programs

- Initialization of RSL81 system, communications and external devices
- Start procedure for the Control Tasks

Note: Refer to the Application Programs documentation for detailed information

8.2 Firmware Functions

The RSL81 board is setup with BIOS firmware. Some standard PC/AT peripheral devices (e.g. DisplayPort, Keyboard/Mouse, Serial Ports, SATA interface) are directly supported by the BIOS, BIOS extensions and Operating Systems. Some peripheral devices (e.g. Ethernet) are directly supported by standard communication software (e.g. TCP/IP stacks, TCP packet drivers) others need special programming according to the freely available sample software (e.g. Watchdog). Please refer to the appropriate documentation for detailed information.

8.3 Application Programming Interface (API)

The RSL81 system does not contain any special API beside the installed BIOS. Refer to the BIOS and Operating System documentation for API specifications.

9 Product Revision History

9.1 Hardware

This paragraph lists the different hardware revisions of the RSL81 systems delivered beginning with the first production lot. Note that prototyping boards are not included and must be returned to factory for upgrade or replacement. All information listed in this document relies on definitive state hardware. Therefore this information may be incompatible with the prototyping board hardware.

Board Identification (see	Product	Revision	Remarks
product label)	Revision	ID	
		Register	
all products #0.1	0.1	03H	GNSS NEO-M9N instead of NEO-M9V, SparkLan WLAN WNFQ-
			268AXI(BT) instead of Intel Wireless-AC 9260
RPC/RSL81I20-A154E #1.0	1.0	03H	Series Release

Tab. 33 Hardware Revision State

9.2 Firmware

This paragraph lists the different firmware versions of the RSL81 systems delivered beginning with the first production lot. Note that prototyping boards are not included and must be returned to factory for upgrade or replacement. All information listed in this document relies on definitive state hardware. Therefore this information may be incompatible with the prototyping board hardware.

Board Identification (see	BIOS	Build Date	Remarks
product label)	Version		
RPC/RSL81I20-A154E #1.0	D2R006B		Original Release

Tab. 34 Firmware Revision State

9.3 Erratas

This paragraph lists some important erratas of the current RSL81 boards to enable workarounds in user software. Additional erratas might be present but a workaround already implemented in the BIOS. It is important therefore that neither the application software nor the operating systems reprograms the processor chipset's configuration registers.

Note that prototype board erratas (boards with revision #0) are not listed here. Contact Syslogic technical support for prototype board information.

Additional erratas of the processor chipsets can be found at:

https://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/atom-e3800-family-spec-update.pdf https://www.intel.com/content/www/us/en/embedded/products/apollo-lake/technical-library.html

Battery supervisi	on errata (not working), all products version #0.1 only					
Problem	Battery supervision not available.					
Implication	LOBAT# flag in system register not usable.					
Workaround	none.					
Correction	This issue is corrected in product version #1.0.					
IOCHCK#/Watcho	log-NMI errata (not working)					
Problem	When Watchdog is configured to activate an NMI, the NMI service routine is not called.					
Implication	Watchdog-NMI not usable.					
Workaround	none.					
Correction	This issue might be a BIOS problem and will be corrected in a future BIOS release.					
SDCard Interface	errata (not working with some SDCard types)					
Problem	The Intel processor chipset contains several issues in SD and SDIO Hostcontroller which can disturb normal operation of the SDCard interface.					
Implication	Some SDCard types will not work reliable.					
Workaround	Some of the issues have already been solved by a BIOS workaround, some are dependent on OS drivers and some are not fixable. Check with Syslogic for a list of working SDCard types.					
Correction	Some of the issues might be solved by new BIOS and/or OS driver releases, but some are not fixable.					
CAN bus errata						
Problem	Incorrect wiring of CAN-FD interface					
Implication	CAN1 and CAN2 interface signals are switched					
Workaround	CAN ports have to be switched in software					
Correction	Wiring fixed in device version 1.0 and above					

Tab. 35 Known Erratas

RPC/RSL81xxx-XxxxE: user documentation DOC/RPC_RSL81X-E; V1.4

Important Note

This document always covers the latest product revision listed in 9.1. Please contact the manufacturers technical support for upgrade options.

RPC/RSL81xxx-XxxxE: user documentation DOC/RPC RSL81X-E; V1.4

10 Manufacturer Information

10.1 Contact

Our distributors and system integrators will gladly give you any information about our products and their use. If you want to contact the manufacturer directly, please send a fax or email message containing a short description of your application and your request to the following address or use one of the information or technical support request forms on our internet homepage:

Syslogic Datentechnik AG, Switzerland

Web: http://www.syslogic.com
Email: info@syslogic.com
Technical support: support@syslogic.com

10.1.1 RMA Service

Syslogic offers a Return Material Authorization process to simplify handling of devices that needs to be returned to the manufacturer. Please follow the instructions on our web page: https://www.syslogic.com/deu/rma.shtml to get best service.